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Reynolds stress turbulence models are adopted and applied for calculating turbulent flow over a backward-facing step. For the 
diffusion term in the transport equations for the Reynolds stresses, two gradient-type models are employed and compared. In 
addition, investigations on the modified e equations are carried out. The results of the computations are compared with the extant 
experimental data. As a consequence, it is concluded that the Reynolds stress models predict the flow field better than the standard 
k-e model in the recirculating region. However, after the reattachment the return to the ordinary turbulent boundary layer is 
shown to be too slow to predict the flow field irrespective of turbulence models. 
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1. INTRODUCTION 

Separation and reattachment of turbulent flow are impor- 
tant processes in many engineering applications, including 
diffusers, airfoils with separation bubbles, heat exchangers, 
and combustors. The turbulent flow over a backward-facing 
step is among the simplest that can display these processes. 
Although there have been many researches in this field, our 
current understanding of the reattachment process is still 
lacking because, despite the simplicity of the configuration, 
the flowfield is very complex, i.e., it consists of three zones 
such as recirculating region, reattaching region and 
redeveloping region. 

Eaton and John:ston(1981) reviewed the general features of 
the backward-facing step flow. The separated shear layer 
appears to be much like an ordinary plane-mixing layer 
through the first half of the separated flow region. But the 
reattaching shear layer differs from the plane-mixing layer in 
the sense that the flow on the low-speed side of the shear 
layer is highly turbulent, as opposed to the low turbulence 
level stream in a typical plane-mixing layer experiment. 

Bradshaw and Wong(1972) measured turbulence quantities 
in the reattachment and redeveloping regions. They indicated 
that shear stress and turbulence length scale in the reattach- 
ment region decrease spectacularly, mainly because of the 
confinement of the large eddies by the solid surface. And 
many researchers(Bradshaw and Wong, 1972; Kim et al., 
1978; Chandrsuda and Bradshaw, 1981) reported the dip in 
the velocity profile near reattachment which persists for a 
downstream distance of about fifty step heights. The persist- 
ence of the dip implies that turbulence is not in local equilib- 
rium and the length scale of the turbulence is not proportional 
to y, i.e., l = ky but increases much more rapidly with y. 

When flow separation occurs, turbulence structure 

becomes more complicated so that the theoretical study on 
turbulent separated flow becomes more dificult. Among the 
existing turbulence models, the Reynolds Stress Model, which 
provides transport equations for the Reynolds stresses, can 
explain anisotropic characteristics of turbulent diffusion 
while the standard k-e model cannot. This model has been 
systematically developed and improved by several 
researchers(Rotta, 1951; Daly and Harlow, 1970; Hanjalic 
and Launder, 1972 ; Launder et al., 1975). 

In this study, the Reynolds stress closure model suggested 
by Launder et a1.(1975) is applied to turbulent flow over a 
backward-facing step. To account for the fluctuating pres- 
sure field by the presence of the wall, the pressure-containing 
correlation model proposed by Gibson and Launder(1978) is 
also applied. The results are compared with the experimental 
data(Kim et al., 1978) and also partly with the standard k-e 
model. 

2. GOVERNING EQUATIONS 

The continuity and momentum equations describing the 
turbulent flow considered in the present study are of steady 
two-dimensional form as follows : 

a (vu~) =o, (1) 
Ox~ 
8 (vU, U~)= 8p 8 [ / 8 U ,  , 8 U ~  - - 3  

(2) 

2.1 Reynolds Stress ModeI(RSM) 
We write the transport equations for the Reynolds stresses 

as 

0 
- - (  Uk u ~ u j  ) = P ~  - e ,~ + r + r + D i~, (3) 

*Department of Mechanical Engineering, Seoul National Univer- 
sity, Seoul 151-742, Korea where, 



32 Jung Yul Yoo, Hae Cheon Choi and Sang Myeong Han 

- -  OU, P i s = _ ( u s u , ~ _ x  + OUs~.  u,u,--ff~-, ) generation, (4) 

Ou~ Ou~ . dissipation, (5) eis=2v Ox~ Ox~, 

_ ~  au, + au~  
r  o \ ~ axT-x~ } " pressure-strain correlation, (6) 

r correlation with a near-wall  
correction, 

Dis= _ 0 ( u i u ~ u , )  " diffusion. (7) * 

sion rate (7) may be evaluated as 

.~, 0 [ k - - O u , u ~ ' ~  
(11) 

where C~ = 0.25. 
A more complex and seemingly superior model for this 
diffusion term was developed by severe simplification of the 
exact transportation equation (Launder et a1.(1975)) as fol- 
lows : 

Equation (5) is readily modelled by the well-known form 
given by Rotta(1951) : 

2 
6,.~ =-~&~6. (8) 

The pressure-strain term (6) is expressed by combining Rotta' 
s linear return-to-isotropy hypothesis and the linear approxi- 
mation of Launder et a1.(1975), 

e - -  2 G + 8  2 
r = - G ~ ( u, us - ~8 , sk )  - ~ (P,s - T S , s P )  

3 0 G - 2  . / 3 U ,  , OU, 

8Gll-2(Q.s 2 6 u p ) ,  

where C~ = 1.5, Ca = 0.4, 
OU, OU, O.=- u , u , - ~ 7 -  u~u, &, , 

- -  OUi 
P = - u i u s  Oxs" 

(9) 

In order to approximate the term r Amano and Goe1(1985) 
simply adopted Launder et al.(1975)'s model. However, in the 
present study, we adopt Gibson and Launder(1978)'s model 
which allows the proximity of a rigid wall to modify the 
pressure field and thus impedes the transfer of energy from 
the streamwise direction to that normal to the wall : 

with 
~,~.~=~u.~+~is  .... (10) 

, 6  r = C1T(  u ,  u,,, nkn,,,&.~ 3 uk ul nkn.  

2 u h u s n k n i ) f  

Ckis,., = C~ ( r 2 n , n , ~  ' s -  3~r 2nins 
, t 2 " 

3 I 
~-~ . .2n .n , )  f ( ~ i r : ) ,  

r = - C. ( P . - 2  &sP ) , 

where r is the position vector, l is a characteristic turbulence 
length scale, C~=0.5, C~=0.3 and C,=0.6. The function 

f [ ~ l  oxpre  od a s  

0 [ k / - - ? u s u ,  , - - g u , u s  
D ' s : c ' * ~ 2 [ ~  u ' u ' ~ - r  usu'  Ox, 

+ - - O u i u j  
(12) 

where C~ = 0.11. 

2.2 Transport Equation for Turbulence Energy Dissipa- 
tion Rate 

The transport equation for 6 used in the high Reynolds 
number form of the k--6 model is given as 

0 E ~ L  ~ ~-e ~ ]A ,  O x s ( P U s 6 ) = p ~ ( C ~ , P _ C ~ ) +  0 : ( + / z t )  06 7 

(13) 

where the Boussinesq's eddy-viscosity concept is employed to 
express the production term P and at = C~pk2/e is the turbu- 
lent viscosity. In fact, Amano and Goe1(1985) used this form of 
the transport equation for 6 together with the transport 
equations for Reynolds stresses which are quite similar to 
those given in the previous subsection except the expression 
for r 

Instead, in the present study, we adopt the form of the 
transport equation for e which was developed and used in 
Hanjalic and Launder(1972) : 

0 E + / .  3 ,  k 06 ,  

(14) 

The values of the constants used in the transport equations 
for e are as follows: 

C~, = 1.44, C~,= 1.92[for Eq.(13)) or 1.90[for Eq.(14)) 
and a, = 1.22. 

For comparison, we also consider Sinder's modification of 
the production term in the e equation which resulted in a 
marked improvement for some flow problems(Launder et al., 
1981) : 

- -  OUi _ #, 3Ui OUi 
P = - u i u s  Oxs p Oxs &s " (15) 

f l C~'*k 3'~ 
( ~ ) =  kEn , r , '  3. N U M E R I C A L  METHOD 

where C,=0.09 and k=0.4187. 
It was suggested by Daly and Harlow(1970) that the diffu- 

* Only diffusion by turbulent velocity fluctuations is retained, 
while diffusion by molecular interaction and pressure-induced 
diffusion are neglected(Launder et a1.(1975)). 

For the calculation of the flow field a modified version of 
the TEACH-2E code(Gosman and Ideriah, 1976) has been 
devised, which is compatible with the turbulence models 
described above and the necessary boundary conditions. The 
control volumes for mean-velocity components are the stag- 
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gered systems in which the locations of U~ and U, are shifted 
half-cell distances in the xl and x2 directions, respectively. All 
of the normal Reynolds stresses u~ are calculated at the 
scalar node points along with P, k, and e, while the shear 
Reynolds stress u~ u~ is calculated at the southwest corner of 
the scalar cell. The convective terms appearing in the trans- 
port equations are all approximated by hybrid scheme. More 
detailed derivation of the discretized equations may be found 
in Han(1987). 

Schematic diagram of the flow domain is shown in Fig. 1. 
At the inlet, all quantities are specified according to the 
experimental condition(Kim et al., 1978) and the fully devel- 
oped condition. At the outlet, the Neumann condition are 
used. At the wall boundaries, the law of the wall is used for 
the velocities and the turbulent quantities. Particularly, the 
boundary conditions for the Reynolds stresses are precisely 
the same as those used by Launder, Reece and Rodi(1975). For 
example, at the horizontal walls, 

2 2 u~ = 5.1u~, 
2 10~2 U 2  = �9 t ~ r ,  
2 - -  2 ua -2.3U~, 

3u~ua -0 ,  
3x2 

where u~ is the friction velocity and the coefficients in the 
normal stresses represent a consensus of several of the most 
thoroughly documented wall flows. 

Computations are performed on a 42 • 42 non-uniform grid 
system with an expansion factor of 1.07 in the x-direction. 
The criteria of convergence has been a maximum residual 
source of the mass flow rate or momentum below 0.05%. 

4. RESULTS A N D  DISCUSSIONS 

The results of the computation were mainly compared with 
the data of Kim et a1.(1978). 
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4.1 R e a t t a c h m e n t  L e n g t h  ( x , )  
The most important factor to be looked for in comparing 

the numerical results with the experimental results for the 
flow over a backward facing step is the reattachment length, 
x,. Numerous attempts have been made to fit x, to the extant 
experimental results with turbulence models (Eaton, 1981: 
Amano and Goel, 1985). 

The mean reattachment distance obtained by the experi- 
ment of Kim et a1.(1978) was found to be x , / H = 7 + l .  In 
Table 1, the reattachment lengths by different turbulence 
models are listed. Generally speaking, it can be said that 
RSM predicts Xr better than k-e. However, contrary to our 
expectations, the use of the invariant form of the diffusion 
term (12) did not give a much better result than the use of 
simple diffusion term (11). Regarding the transport equation 

for e, it was reported in 1980-1981 AFOSR-HTTM- 
STANFORD Conference(Launder et al., 1981) that Eq.(14) did 
not give good results due to the presence of the production 
term. And in the simulation of round jet by Launder and 
Morse(1977), it was also reported that RSM with the use of 
Eq.(14) gave worse results than standard k-e model. The 
similar results are shown in our computation. It seems that 
Sinder's work (Eq.(15)) which modified the production term in 
e equation approaches the experimental results. 

Streamlines obtained by using k-e model and RSM are 
shown in Fig. 2. The RSM shows the turbulence-driven secon- 
dary flow in salient corner while k-e model does not. The Cp 
curves obtained by using different models are compared in 
Fig. 3. 
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4.2 Local Mean Velocity and Turbulent Quantities 
Figure 4 shows the local mean streamwise velocity profiles 

at different locations, In recirculating region, RSM predicts 
the mean velocity better than k-e model. In redeveloping 
region, the results by k-e  model and RSM-HL are more 
similar to the experimental data, This is considered to be 
only due to the fact that they predict shorter reattachment 
distances than can be observed in the experiment. At x / H  = 
16, the experimental results reveal the characteristics of the 
turbulent boundary layer while the numerical results do not. 
Clearly, the flow structure after reat tachment predicted by 
the numerical calculation returns to ordinary turbulent 
boundary layer at  a much slower rate than in the experiment. 

The turbulent kinetic energy is shown in Fig. 5. The under- 
prediction of the reattachment length in most numerical 
calculations may be explained by the over-prediction of the 
turbulent kinetic energy. More specifically, while k--e  model 
and RSM-HL overpredict the turbulent kinetic energy in the 
recirculating region, RSM-Sinder predicts better resulting in 

larger numbers of xR in Table 1. After reattachment, the 
values of the turbulent kinetic energy may be irrelevent to 
turbulence models. 

The behaviors of the turbulent intensity is quite similar to 
those of the turbulent kinetic energy, as shown in Fig. 6. 
Especially, the maximum turbulent intensities, irrespective of 
turbulence models, are nearly the same as the experimental 
results after reattachment. But at x/H=16,  the numerical 
results underpredict the turbulent intensity near wall because 
of the slow return to the ordinary turbulent boundary layer. 
Figure 7 shows the Reynolds shear stress. Generally, it can be 
said that the shear stress distributions are successfully 
predicted by the Reynolds stress model with Sinder's modifi- 
cation. 

4.3 Further Remarks 
The algorithm for present computation is based on hybrid 

scheme. When the turbulent Reynolds stresses are included in 
the momentum equation as source terms, the accuracy of the 
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Table 1 Reattachment lengths for different turbulence 
models 

k eq. or Reynolds 
stress eqs. e eq .  

k eq. Eq.(13) 
gqs.(3)-(t0), (11) gq.(t3) 

Eq.(14} 
Eqs.(14)-(15) 

Eqs.(3)-(10), (12) Eq.(13) 
Eq.(14) 

Eqs,(14}-(15) 

xR/ H I Remark 

5.51 I Standard h-e 

6�9 I 
4.81 I 
6.97 1 

7.10 I 
4.15 f RSM-HL 
7.10 I RSM-Sinder 

computation may fall to first-order in some regions of flow 
domain�9 It is noteworthy that the upwind corrected scheme 
adopted by Choi et a1.(1988) can be applied to this case to 
assure the second-order accurate solutions. 

The use of the law of wall in near-wall grid cannot be 

justified because of the dip in the velocity profile after reatta- 
chment as stated in INTRODUCTION. Moreover, the use of 
zero-flux condition for the turbulent Reynolds stresses (Celen- 
ligil and Metlor, i985; Tahry, 1985) may create some 
nonphysical solutions. Therefore, more researches on wall- 
boundary conditions are required in numerical simulation of 
the flow with steep pressure gradients, i.e., step wall in this 
case. 

5. C O N C L U S I O N S  

A numerical simulation of the turbulent flow over a 
backward-facing step using Reynolds stress models has been 
performed. 

It is shown that RSM with ~r equation modified by 
Sinder(RSM-Sinder) predicts the reattachment length better 
than k-e model and RSM with e equation modified by 
Hanjalic and Launder(RSM-HL). 



36  Jung Yul Yoo, Hae Cheon Choi and Sang Myeong Han 

I 

>~ 

2 

0 
0,00 

0 EXP 

RSM-Sinder 
) 

) . RSM-HL 

_ - . . . . . . . . . . . . . . . .  

o,o  o.o  o.o  o,o  
2 2 

U /Uln 
(a) 

I 

2 

O 0 EXP 

RSM.Slnder 

0 --- RSM-HL 

- ~...,) 
0,00 0.01 0,02 0,03 

ua/U~ 
(c) 

I 

2 
I( 0 EXP 

RSM-Slnder 

RSM-HL 

o / / / ,  

0 I 
0,00 0,025 0.05 

.---.2 2 u /Uin 
(b) 

I 

0 EXP o 

0 - RSM-Slnder 

~ - RSM-HL 

0 ~ ~  I o 
,000 ,005 ,010 ,015 

2 ua/Uln 
(d) 

Fig. 6 Turbulent intensity at x /H =(a) 2.33 ; (b) 5.887 ; (c) 8.553 ; (d) 15.667 

The profiles of the mean velocity and the turbulent quan- 
tities using RSM-Sinder are closer to the experimental data 
than those using standard k -e  and RSM-HL. But it is shown 
that the very slow return to the ordinary turbulent boundary 
layer after reattachment makes far downstream flow field 
reveal the characteristics of plane mixing layer as opposed to 
the experimental results. Last but not least, it is required that 
the wall-boundary conditions should be thoroughly studied in 
the region after reattachment where the dips in the velocity 
profile occur. 
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